On the blow-up phenomenon for the mass-critical focusing Hartree equation in R4

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the blow up phenomenon for the mass critical focusing Hartree equation in R

Here f(u) = λ ( V ∗|u|2 ) u, V (x) = |x|−γ , 0 < γ < d, and ∗ denotes the convolution in Rd. If λ > 0, we call the equation (1.1) defocusing; if λ < 0, we call it focusing. This equation describes the mean-field limit of many-body quantum systems; see, e.g., [6], [7] and [36]. An essential feature of Hartree equation is that the convolution kernel V (x) still retains the fine structure of micro...

متن کامل

On the blow up phenomenon for the L-critical focusing Hartree equation in R

For the defocusing with 2 < γ < min(4, d), J. Ginibre and G. Velo [6] proved the global well-posedness and scattering results in the energy space. Later, K. Nakanishi [26] made use of a new Morawetz estimate to obtain the similar results for the more general functions V (x). Recently, the authors proved the global wellposedness and scattering for the defocusing, energy critical Hartree equation...

متن کامل

Global well-posedness, scattering and blow-up for the energy-critical, focusing Hartree equation in the radial case

We establish global existence, scattering for radial solutions to the energy-critical focusing Hartree equation with energy and Ḣ norm less than those of the ground state in R× R, d ≥ 5.

متن کامل

On the classification of minimal mass blowup solutions of the focusing mass-critical Hartree equation

Consider the focusing mass-critical nonlinear Hartree equation iut + u=−(| · |−2 ∗ |u|2)u for spherically symmetric H 1 x initial data with ground state mass M(Q) in dimension d 5. We show that any global solution u which does not scatter must be the solitary wave eitQ up to phase rotation and scaling. © 2008 Elsevier Inc. All rights reserved. MSC: 35Q55

متن کامل

On the blow up phenomenon for the L critical nonlinear Schrödinger Equation

with u0 ∈ H1 = {u,∇u ∈ L2(RN )} in dimension N ≥ 1. This equation for N = 2 appears in physics as a universal model to describe self trapping of waves propagating in nonlinear media. The physical expectation for large smooth data is the concentration of part of the L2 mass in finite time corresponding to the focusing of the laser beam. If some explicit examples of this phenomenon are known, and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Colloquium Mathematicum

سال: 2010

ISSN: 0010-1354,1730-6302

DOI: 10.4064/cm119-1-2